
Journal of Statistical Physics, Vol. 69, Nos. 3/4, 1992 

Zero-Temperature Properties of Randomly 
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We study the zero-temperature behavior of several simple models for randomly 
self-interacting polymers in one and 1 + 1 dimensions. Results are based on 
exact enumeration and closed-form expressions. 
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Although there has recently been considerable interest in polymers on a 
random lattice, (1) much less attention has been given to the case of 
polymers which are made up of a random sequence of monomers. (2 6) 

This is a problem relevant to protein folding (5'6) and to the study of 
polyelectrolytes. (7) In this paper we consider several simple models of such 
random chains, focusing particularly on the effect that the resulting 
random interactions between monomers have on the ground-state proper- 
ties. Similar simple models have been introduced recently by other 
authors. (3.4) 

We contrast the cases of site- and bond-disordered chains with long- 
and short-range interactions in one and two dimensions. Our conclusions 
are drawn using exact enumeration techniques, compared to exact results 
where possible. 

We first present results for one-dimensional models and then compare 
them with results for a two-dimensional directed polymer. In one dimen- 
sion the polymer is modeled by an L-step random walk on a line. Disorder 
is introduced by assigning a variable s i=  +1 or s i=  - 1  (i: 1,..., L) with 
probabilities p and 1 -  p, respectively, to, in the case of bond disorder, 
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each step of the walk or, in the case of site disorder, each site separating 
consecutive steps of the walk. The energy of a particular configuration is 

( i , j )  

For convenience we shall term the variables si "charges." We restrict 
ourselves to the case V >  0, corresponding to like charges repelling. 

In the case of long-range interactions the sum is taken over all pairs 
of charges lying at the same position on the lattice. In the one-dimensional 
short-range case the sum is taken over those pairs that visit the same site 
consecutively; that is, charges separated by only one change of direction. 

For each of the models considered we are interested in the quenched 
average of the ground-state energy <Eo),  its standard deviation a, and the 
mean-square end-to-end length of the polymer <R 2 > as the length L of the 
walk tends to infinity. Therefore we define the exponents 

< R  2 > ~ L 2v (2)  

<Eo> ~ L  ~ (3) 

a 2-- < E ~ > -  <Eo>2 ~ L 20 (4) 

where the angular brackets indicate a quenched average over all possible 
charge assignments. 

Fig. 1. 
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Variation of the end-to-end distance squared with polymer length for the one-dimen- 
sional polymer with charges on the bonds and long-range interactions. 
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Numerical results were obtained by calculating the ground state 
exactly for all possible charge configurations of a polymer of length L for 
values of L up to 14. A typical set of results for the end-to-end distance of 
the long-ranged one-dimensional walk is shown in Fig. 1. Results for the 
exponents for the various cases studied are collected in Tables I-V. 

The error bars were obtained by comparing different straight line fits 
to the data. In some cases it was possible to derive a closed form for the 
ground-state energy and end-to-end distance and hence find exact or very 
accurate values for the exponents. This provided a check for the numerical 
calculations. We discuss results for each of the different models in turn. 

One-Dimensional  Chain w i t h  Long-Range Interact ions and 
Charges on the Bonds 

We first consider the one-dimensional chain with long-range inter- 
actions with the charges on the bonds. For this problem it is possible to 
derive a closed-form expression for the ground-state energy and its variance 
and an exact expression for the end-to-end distance squared. Our argument 
consists of finding a minimum of the functional form of the energy for a 
given set of charges and then showing that there is at least one possible 
walk which satisfies the minimization. The result agrees order by order 
with the exact enumeration results. The advantage of obtaining closed 
forms for the thermodynamic quantities is that for very small amounts of 
computing time it is possible to obtain values for very long polymers. This 
gives essentially exact results and provides an important check on whether 
the exact enumerations have reached the asymptotic regime. 

Consider a polymer made up of n positive and m negative charges. Of 
these charges let nk positive and mk negative charges lie on each bond k. 
The total energy of the polymer is 

v 
E =  -- "--~ E(nk +mk)- -  (nk--mk) z] 

2 k  
(5) 

For a given charge distribution the second term in this expression must be 
minimized to achieve the ground state. Assuming that the number of 
positive charges is greater than the number of negative charges, the lowest 
energy arises when (nk--mk) is either 0 or 1, with the fewest possible 
number of terms nk- -mk= 1. The ground-state energy is then simply 
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proportional  to the excess number of positive charges over negative ones, 
giving 

V 
E o = - ~- In + m - (n - m)]  = - Vm (7) 

or, more generally, 

E o = - V m i n ( m ,  n) (8) 

It is possible to find at least one state which satisfies these conditions: 
that in which all the positively charged links go to the right and all the 
negatively charged links to the left. Thus this is indeed an achievable 
ground-state energy. 

Averaging over all possible sets of charges gives 

L L! 
( E o ) = -  ~ [Vmin(L-m,m)]m!(L_m)!Pm(1-p) L-m (9) 

m = 0  

L L! 
( E g ) =  ~ [Vmin(L-m,m)]Zm!(L_m)!p"(1-p) L-'' (10) 

m = 0  

from which the standard deviation 0 "2 follows immediately. 
A bond k visited an even number of times will have as many links 

going to the right as the left and therefore will add nothing to the end-to- 
end distance, whereas a bond visited an odd number of times will add one 
unit to the end-to-end distance. It  follows from the above that the 
number of bonds visited an odd number of times [ that  is, those where 
( n k - - m k ) 2 = l ]  is ]n--m]. Hence the end-to-end distance for a given 
ground-state distribution is I n - m l ,  and 

c L! 
( R 2 ) =  ~ (2m-L)2m!(L_m)!pm(1-p) L-'~ (11) 

m = 0  

This is just the expression for an asymmetric random walk, that is, a biased 
walk with a probability p of going in one direction and a probability 1 - p  
of going in the opposite direction. Performing the sum in Eq. (11 ) explicitly 
gives 

( R  2) = (2p -- 1)2L 2 + 4p(1 - p)L (12) 

The results from the closed-form expressions (9) and (10) are summarized 
in Table I. Results for ( E  o) and (Eo  2) can be calculated numerically to 
high accuracy and show that the model is self-averaging (e = 1 ) and has a 
value of 0 =  1/2 for all values o fp .  It  can be seen directly from Eq. (12) that 
for p = 1/2, v = 1/2, but for all other values of p, v = 1. 
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Table I. Enumeration and Exact Results for a One-Dimensional Polymer with 
Charges on the Bonds and Long-Range Interactions 

p 0 "exact" 0 ~ "exact" c~ v Exact v 

0.05 0.51 + 0.03 0.50 1.0 + 0.001 1.00 1.01 __ 0.05 1.00 
0.15 0.51 __ 0.03 0.50 1.02 + 0.03 1.00 0.99 + 0.05 1.00 
0.25 0.60 + 0.05 0.50 1.01 + 0.03 1.00 0.87 __ 0.05 1.00 
0.35 0.68 ___+ 0.05 0.50 1.1 __+ 0.2 1.00 0.61 ___+ 0.05 1.00 
0.45 0.56 ___+ 0.05 0.50 1.2 + 0.2 1.00 0.53 ___+ 0.05 1.00 
0.50 0.50 + 0.05 0.50 1.2 + 0.3 1.00 0.48 __ 0.05 0.50 

Extrapolated results f rom the exact enumerat ions are also given in 
Table ! for comparison.  This compar ison  gives some handle on the 
accuracy of the exact enumerat ion for models where no closed-form expres- 
sions are available. ~ agrees with the exact value to within the error  bars 
and 0 shows broad  agreement  but with error bars suggested by the data  
too  small, v shows a slow crossover from 1 to 1/2 as would be expected 
from the form of Eq. (12). The data  showed some odd/even pari ty effects, 
which affected the determination of  the results to varying degrees. 

Equat ion  (12) implies that  for large L, ( R  2)  obeys the scaling form 

< R 2 ) ~ z 2 v a ( I p  - 1/21 t ~) (13) 

with v = ~b = 1/2 and G(x) ,= 1 + 4x 2. This scaling form is consistent with the 
idea that  for p ~ 1/2 we will have, on large length scales, the behavior  of  
p = l .  

O n e - D i m e n s i o n a l  Chain  w i t h  L o n g - R a n g e  I n t e r a c t i o n s  and 
Charges  on the  Si tes  

Again considering long-range interactions, but  with the charges now 
on the sites, we have not  been able to find closed-form expressions for the 
the rmodynamic  variables, but  have to rely on exact enumerat ion data. 
Results are listed in Table II. The numerical  da ta  are not  as good  as for the 
case with the charges on the bonds, but  the evidence is that  here, too, the 
ground-sta te  energy is extensive ( ~ =  1) for all values of p > 0 . 1 5 .  We 
believe that  the anomalous  result for p = 0.05 is simply a consequence of  
the limited length of the polymer  chains considered, and that here, too, the 
system is likely to be self-averaging. To  obtain a nonzero  result for the 
ground-s ta te  energy, it is necessary to have at least two neighboring 
positive charges, which occurs with a probabil i ty too  small to give sensible 
numerical  results. Results for the variance are not  precise, but  are consis- 
tent with a value 0 = 1/2 for all p. 
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Enumeration Results for a One-Dimensional Polymer with Charges 
on the Sites and Long-Range Interactions 

p 0 e v 

0.05 0,4 + 0.1 0.5 +_ 0.05 0.99 + 0.05 
0.15 0,6 _+ 0.1 1.0 _+ 0.1 0.99 _+ 0.05 
0.25 0.7 _+ 0.1 1.0 _ 0.1 0.97 _ 0.05 
0.35 0.7 +_ 0.I 1.0 _ 0.1 0.77 __ 0.05 
0.45 0.5 + 0.1 1.1 -I- 0.2 0.58 _ 0.05 
0.50 0.5 +0.1 1.1 +0.2 0.56 +0.05 

Somewhat  surprisingly, the exact enumerat ion result for the end-to- 
end distance when p = 1/2 is v = 0.56, which differs from the value of  1/2 
obtained when the charges are on the bonds. It is interesting that Kan to r  
and Kardar ,  considering a similar site problem, but with a Gaussian 
distribution of  charges, find v = 0.574 > 1/2. (3) 

The situation is less clear for the case when p ~ 1/2. However,  com- 
paring the results of the exact enumerat ion to that  for the bond-disordered 
case, it would appear  at least plausible that v = 1 away from p = 1/2 for the 
site-disordered case as well. In  the bond-disordered case the transit ion from 
v = 1/2 to v = 1 occurs because at p = 1/2 the numbers  of positive and 
negative charges balance on average, giving rise to a compact  structure, 
whereas for p r 1/2 there is an excess of one species over the other, which 
gives rise to a tail, p ropor t ional  in length to this excess and therefore, in 
turn, propor t ional  to the length of  the polymer. It would seem reasonable 
to assume that  a similar mechanism arises in the site-disordered case. 

Fur ther  support  for this behavior  comes from a scaling analysis of the 
data. The above arguments  imply that  Eq. (13) should still hold with 
v = 0.56, and possibly a different value of  ~b. One expects that  for x ~ ~ ,  
G(x) ~ x ~' with ff~b + 2v = 2. Figure 2a shows the data  plotted as ( R 2 ) / L  2v 
versus ( 1 / 2 - p ) L  m, for different values of p and L. We see that the 
data  collapse fairly well, and note particularly that  the results for p = 1/2 
fall close to a point, implying that, to within numerical errors, v = 0.56. 
In Fig. 2b we show the log- log plot of  these data. The data  become 
asymptotical ly linear with slope ~, = 1.76, giving good  agreement with the 
scaling assumpt ion and thus strengthening the conclusion that  for p r 1/2, 

O n e - D i m e n s i o n a l  C h a i n  w i t h  S h o r t - R a n g e  I n t e r a c t i o n s  

The exact enumerat ion data  are given for the short-range one-dimen- 
sional problems for the bond-  and site-disordered cases in Tables I I I  and 
IV, respectively. 



Randomly Self-Interacting Polymers 865 

Table Ill. Enumeration and Exact Results for a One-Dimensional Polymer 
wi th  Charges on the Bonds and Short-Range Interactions 

p 0 "exact" 0 ~ "exact" c~ v Exact v 

0.05 0.60 + 0.05 0.50 1.14 + 0.05 1.00 1.01 + 0.05 1.00 
0.15 0.60 • 0.05 0.50 1.16 + 0.05 1.00 0.99 + 0.05 1.00 
0.25 0.64 • 0.05 0.50 1.20 • 0.05 1.00 0.87 • 0.05 1.00 
0.35 0.62 • 0.05 0.50 1.20 • 0.05 1.00 .0.61 __+ 0.05 1.00 
0.45 0.50 • 0.07 0.50 1.20 • 0.05 1.00 0.53 • 0.05 1.00 
0.50 0.50 • 0.07 0.50 1.20 + 0.05 1.00 0.50 __+ 0.05 0.50 

In the bond-disordered case it is clear that the end-to-end distance 
behaves like that of an anisotropic random walk [<R2> given by 
Eq. (12)], since the polymer can minimize its energy by changing direction 
each time there is a change in the sign of the charges. Once an initial direc- 
tion is selected, one species of charge will correspond to stepping to the 
right, and the other to the left, giving v =  1/2 for p =  1/2 and v =  1 
otherwise. This is not the case for the site-disordered problem, as the 
polymer folds in such a way as to bring into contact charges which are next 
nearest neighbors on the chain. This property appears to depress the value 
of the exponent, possibly giving rise to a subdiffusive value for v, at least 
for  p = 1/2. 

In  the  b o n d - d i s o r d e r e d  case  t he  g r o u n d - s t a t e  en e rg y  is g iven  by  

Eo = - V ~  (n k - i )  = - V L  + V N  k (14) 
k 

when n k is the number of monomers on bond k, and N k = Z ~  1, the 
number of visited bonds. It can then be seen that 

( E o >  = - V L  + V < N k >  

a 2 =  V 2 [ ( N 2 > _  ( N k > 2 ]  

(15) 

(16) 

Table IV. Enumeration Results for a One-Dimensional Polymer wi th  Charges 
on the Sites and Short-Range Interactions 

p 0 ~ v 

0.05 0.54 + 0.05 1.0 + 0.1 0.85 + 0.05 
0.15 0.63 +0.05 1.1 • 0.61 +0.1 
0.25 0.66 • 0.05 1.2 • 0.1 0.47 • 0.1 
0.35 0.65 +0.05 1.23 • 0.08 0.43 _+0.1 
0.45 0.56 • 0.05 1.26 __+ 0.07 0.42 • 0.1 
0.50 0.53 • 0.05 1.26 • 0.07 0.31 • 0.1 
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N~ represents a characteristic length scale for the polymer, and therefore we 
would expect it to scale in the same manner as the other characteristic 
length scales, that is, ( N k ) , ~ L  1/2 for p =  1/2 and ( N k ) , ~ L  for p C  1/2. 
This then implies, when substituted back into Eq. (15), that < E o ) ~ L  for 
all p. 

The polymer configurations for this problem are the same as for a 
simple random walk in one dimension with an imposed drift. It is therefore 
to be expected that any fluctuation in the size of the polymer would be the 
same as for the case with no drift, p - -  1/2. This then implies that a 2,,~ L. 

These results give that for the short-range bond-disordered problem 
we again have that a = 1 and 0 = 1/2. We were not able to find similar 
arguments for the site-disordered case, but it is possible to say that the 
ground-state energy must lie between 0 and - V L ,  since there can be no 
more than L interactions in any configuration. This imposes the restriction 
that 0 ~< a ~< 1. The numerical results suggest a higher value for a, but it 
would seem reasonable that here, too, the ground-state energy is self- 
averaging (~ = 1). 

Two-Dimens iona l  Directed Polymer w i th  Shor t -Range 
Interact ions 

It is of interest to compare our results for one-dimensional chains to 
those for a simple two-dimensional model. We consider a self-avoiding ran- 
dom walk on a square lattice which is directed in that steps in the negative 
x direction are not allowed, as shown in Fig. 3. Charges are assigned to the 
bonds and every pair of nonconsecutive steps which fall in the same row 
but in adjacent columns are allowed to interact with the energy defined by 
Eq. (1). 

Results for the directed polymer are given in Table V. As for the one- 
dimensional models with short-range interactions, our numerical results 
suggest that the model is not self-averaging, but as the number of inter- 
actions is again bounded above by L, ~ ~< 1. There is no evidence for a 
collapse transition: vx and Vy decrease smoothly with p, indicating, as 
expected, that the polymer is becoming more compact. It is interesting to 
note that the ratio of Vy/Vx = ~ is close to 2/3 for all values of p. This is the 
exponent that would be expected for a directed polymer in a random 
environment (s) Within numerical accuracy, 0 = ~, whereas for the directed 
polymer in a random environment 0 = 2 ~ - 1 .  (L8) It would be of great 
interest to understand these relations better. 

In summary, this paper presents results for the ground-state properties 
of one- and two-dimensional randomly interacting polymer systems, the 



Randomly Self-Interacting Polymers 867 

Fig. 3. 

X 

A directed polymer on a square lattice. The dashed lines show the nearest neighbor 
interactions, 

ground-state energy <Eo>, its variance 0 "2, and the squared end-to-end 
distance of the polymer <R2>. The results obtained are sensitive to the 
details of the underlying model. 

For a one-dimensional model with charges on the bonds we have 
obtained exact expressions for 0-2, <Eo> ' and <R 2) for the case where the 
interactions are long-range and for <R 2> for short-range interactions. 
Other results follow from scaling arguments and exact enumerations. It is 
important to caution that, where exact results are available for comparison, 
it is apparent that it can be difficult to reach the asymptotic regime. It was 
possible to overcome this difficulty for the long-ranged site problem by 
finding appropriate scaling variables. 

A result which needs particular emphasis is that v r 1/2 for p = 1/2 for 
models with charges on the sites in one dimension. 

Table V. Enumeration Results for a Directed Polymer with 
Short-Range Interactions 

p 0 Ot Vy v~ Vy/V.,: 

0.05 0.68 4- 0.05 1.22 __+ 0.08 0.66 +__ 0.06 0.99 __-t- 0.05 0.67 
0.15 0.71 __% 0.05 1.26 __+ 0.1 0.66 __+ 0.06 0.96 __ 0,05 0.69 
0.25 0.7I __ 0.05 1.26 + 0.1 0.62 __+ 0.05 0.90 _____ 0.05 0.69 
0.35 0.70 4- 0.05 1.27 __+ 0.1 0.55 __+ 0.05 0.83 + 0.08 0.66 
0.45 0.67___+0.05 1.31 __+0.1 0.50__+0.05 0.80_____0.1 0.63 
0.50 0.674--0.05 1.31_____0.1 0.50__+0.05 0.80__+0.1 0.63 
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NOTE A D D E D  IN P R O O F  

We would like to thank  Dr. F. Igloi for bringing to our  notice that  the 
sums in Equat ions  (9) and (10) m a y  be per formed using the central  limit 
theorem and approx ima t ing  the binomial  distr ibution by a Gauss ian:  

L! pmqL- m __ 1 I (m_ - -  Zp)2q 
m ! ( L - m ) !  (2rcLpq)l/2 exp 2Lpq I 

The sums in (9) and (10) m a y  then be treated as integrals, giving the 
following results 

( E o )  = L min(p ,  1 - p ) +  O(1) p #  1/2 

< E o ) = - ~  1 p =  1/2 

(Eo2> = L a [ m i n ( p ,  1 - p ) ] 2 + L p ( 1  - p )  p:~ 1/2 

( L ) 2 {  2 1 }  
(Eo  2 ) =  1 ~ I- p = 1 / 2  

It  then follows that  

a 2 = Lp(1 - p )  p :A 1/2 

2 L ( l + 2  ) p = 1 / 2  

Hence ( E o ) ~  L and a 2 ~  L in agreement  with the numerical  results. 
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